Situativität, Funktionalität und Vertrauen: Ergebnisse einer szenariobasierten Interviewstudie zur Erklärbarkeit von KI in der Medizin
Published in Journal for Technology Assessment in Theory and Practice, 2024
Marquardt, M., Graf, P., Jansen, E., Hillmann, S., & Voigt-Antons, J.-N.
A central requirement for the use of artificial intelligence (AI) in medicine is its explainability, i. e., the provision of addressee-oriented information about its functioning. This leads to the question of how socially adequate explainability can be designed. To identify evaluation factors, we interviewed healthcare stakeholders about two scenarios: diagnostics and documentation. The scenarios vary the influence that an AI system has on decision-making through the interaction design and the amount of data processed. We present key evaluation factors for explainability at the interactional and procedural levels. Explainability must not interfere situationally in the doctor-patient conversation and question the professional role. At the same time, explainability functionally legitimizes an AI system as a second opinion and is central to building trust. A virtual embodiment of the AI system is advantageous for language-based explanations.
Recommended citation: Marquardt, M., Graf, P., Jansen, E., Hillmann, S., & Voigt-Antons, J.-N. (2024). Situativität, Funktionalität und Vertrauen: Ergebnisse einer szenariobasierten Interviewstudie zur Erklärbarkeit von KI in der Medizin. Journal for Technology Assessment in Theory and Practice, 33(1), 41-47. https://doi.org/10.14512/tatup.33.1.41